



# 1 Permafrost degradation of peatlands in northern Sweden

- 2 Authors: Samuel Valman<sup>1,2\*</sup>, Matthias Siewert<sup>3\*</sup>, Doreen Boyd<sup>2</sup>, Martha Ledger<sup>4,5</sup>, David
- 3 Gee<sup>6</sup>, Betsabe de la Barreda-Bautista<sup>4,2</sup>, Andrew Sowter<sup>6</sup>, Sofie Sjogersten<sup>4</sup>

#### 4 Affiliations:

- 5 <sup>1</sup> Nottingham Geospatial Institute, University of Nottingham, Nottingham NG7 2TU, UK
- 6 <sup>2</sup> School of Geography, University of Nottingham, University Park, NG7 2RD, Nottingham, UK
- 7 <sup>3</sup> Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden
- <sup>4</sup> School of Biosciences, University of Nottingham, Sutton Bonington Campus, College Road, LE12 5RD,
   9 Loughborough, UK
- <sup>5</sup> School of Biological Sciences, Kadoorie Biological Sciences Building, University of Hong Kong, Pok Fu Lam
   Road, Hong Kong
- 12 <sup>6</sup> TerraMotion, Ingenuity Centre, Triumph Rd, Nottingham NG7 2TU

13

- 14 \*These authors contributed equally to this work.
- 15 Corresponding author: Sofie Sjögersten sofie.sjogersten@nottingham.ac.uk

16 Abstract. Climate warming is degrading palsa peatlands across the circumpolar permafrost region. Permafrost 17 degradation may lead to ecosystem collapse and potentially strong climate feedbacks, as this ecosystem is an 18 important carbon store and can transition to being a strong methane emitter. Landscape level measurement of 19 permafrost degradation is needed to monitor this impact of warming. Surface subsidence is a useful metric of 20 change and can be monitored using InSAR satellite technology. We combined InSAR data, processed using the 21 ASPIS algorithm to monitor ground motion between 2017 and 2021, with optical and LiDAR data to investigate 22 the rate of subsidence across palsa peatlands in northern Sweden. We show that 55% of the area of Sweden's 23 eight largest palsa peatlands is currently subsiding, which can be attributed to these permafrost landforms and 24 their degradation. The most rapid degradation occurring in the largest palsa complexes in the most northern part 25 of the region of study, also corresponding to the areas with the highest % palsa cover within the overall mapped 26 wetland area. Further, higher degradation rates were found in areas where winter precipitation has increased 27 substantially. The roughness index calculated from a LiDAR-derived DEM, used as a proxy for degradation, 28 increases alongside subsidence rates and may be used as a complementary proxy for palsa degradation. We 29 show that combining datasets captured using remote sensing enables regional-scale estimation of ongoing 30 permafrost degradation, an important step to-wards estimating the future impact of climate change on 31 permafrost-dependent ecosystems.

32

33 Keywords: Permafrost, subsidence, Arctic, InSAR, palsa, peatlands

34





35

#### 36 1.0 Introduction

37 Permafrost regions are critical components in the climate system, due to their essential carbon (C) storage

38 service (Harris et al., 2022). The circumpolar permafrost region in particular, stores around 1300±200 Pg of

39 organic C, corresponding to around 50% of the global terrestrial C pool (Hugelius et al., 2020; Köchy et al.,

 $40 \qquad 2015). \ It \ covers \ around \ 21 \ million \ km^2 \ or \ 22\% \ of \ the \ Northern \ Hemisphere's \ landscapes \ (Obu, \ 2021). \ Northern \ Nort$ 

 $\label{eq:perturbative} 41 \qquad \text{peatlands themselves store an estimated } 415 \pm 150 \ \text{Pg of C in an area covering around } 3.7 \ \text{million } \text{km}^2 \ \text{of which}$ 

 $\label{eq:acount} 42 \qquad \text{around } 1.7 \text{ million } \text{km}^2 \text{ is permafrost substantially overlapping with the circumpolar permafrost region}$ 

43 (Hugelius et al., 2020). Permafrost in these peatlands raises the surface above the water table forming so-called

44 palsa (pl. palsas) or, in extended form peat plateaus (Seppälä, 2011). These account for substantial areas of

45 global permafrost, including in northern Fennoscandia (Ballantyne C. K., 2018; Gisnås et al., 2017; Tarnocai et

46 al., 2009), for example, in northern Sweden 137 km<sup>2</sup> of this palsa peatland has been reported (Backe, 2014).

47 Climate warming, and the associated alteration in the precipitation regime, is increasingly recognized to be a

48 particular threat to permafrost (Biskaborn et al., 2019), with the subarctic Fennoscandian permafrost region, and

the palsa peatlands within, particularly vulnerable (Christiansen et al., 2010; Farbrot et al., 2013).

50 Climatic models project unsuitable conditions for permafrost within the coming century, with the most pessimistic 51 estimates projecting unsuitability even sooner - by 2040 (Chadburn et al., 2017; Fewster et al., 2022; Könönen et 52 al., 2022; Stefan et al., 2006). As palsa peatlands are often found in the sporadic or discontinuous permafrost zone 53 (Zuidhoff & Kolstrup, 2000), they are particularly sensitive to climate warming and any resultant permafrost thaw 54 and disappearance. Their sensitivity mainly results from the alterations in the thermal insulation effect of peat 55 deposits and snow as the climate changes (Seppälä, 2011; Smith & Riseborough, 1996). Specifically, organic peat 56 has a high thermal conductivity when wet and frozen, but low conductivity when dry and thawed. Snow has a 57 highly insulating effect on ground temperature. Thus, extended periods of air-temperatures below 0°C and thin 58 snow cover in winter are beneficial to maintain or grow the frozen permafrost core of palsas and peat plateaus. 59 Low summer precipitation, which reduces the thermal conductivity of peat, also helps to preserve the frozen cores 60 in palsa. In contrast, increased snowfall has been linked to permafrost degradation as it increases winter insulation. 61 Further, high summer precipitation leads to higher thermal conductivity of peat, and combined with warm summer 62 temperatures, can degrade permafrost by increasing permafrost temperatures and subsequent thawing of the frozen 63 peat core of palsas. The strong insulating properties of peat allow the occurrence of permafrost at the southern 64 extent of the northern permafrost region and valley bottoms in areas otherwise too warm for permafrost (Johansson 65 et al., 2013; Seppälä, 2011; Smith & Riseborough, 1996).

66 Warming of the permafrost in palsa peatlands typically leads to top-down thaw, (i.e. thickening of the active

67 layer), and eventual subsidence of the surface, as well as lateral thaw, sometimes called abrupt thaw or

68 thermokarst, which occurs at the margin of peat plateaux (Seppälä, 2011; Smith & Riseborough, 1996; Zuidhoff,

69 2002). This is often associated with water-logged conditions and, as a result, increased methane (CH<sub>4</sub>) emissions

70 (Glagolev et al., 2011; Hugelius et al., 2020; Matthews et al., 1997; Miglovets et al., 2021; Schuur et al., 2009;

71 Turetsky et al., 2020; Varner et al., 2022), which is a central theme for permafrost research (Sjöberg et al.,

72 2020). A subsequent impact of this permafrost degradation is an alteration in vegetation cover, its hydrology,

73 and human use of the landscape (e.g., infrastructure and reindeer husbandry)(Markkula et al., 2019; Ramage et

74 al., 2021). Given the potentially large impacts of permafrost thaw on the global climate, ecosystem function and

human activity, quantification and monitoring of the subsidence in peat deposits affected by permafrost thaw

76 and degradation, as well as an understanding of their sensitivity to changing climatic parameters, is urgently

77 required (IPCC, 2021).

78 The degradation of the permafrost of palsa peatlands has been observed right across the circumpolar permafrost

79 region in a number of studies, including in northern Scandinavia (Åkerman & Johansson, 2008; de la Barreda-

80 Bautista et al., 2022; Luoto & Seppälä, 2003; Olvmo et al., 2020; Sannel et al., 2016; Varner et al., 2022);

81 Russia (Glagolev et al., 2011; Miglovets et al., 2021; van Huissteden et al., 2021); the USA (Douglas et al.,

82 2021; Douglas et al., 2015; Sannel, 2020) and Canada (Mamet et al., 2017; Sannel & Kuhry, 2011; Short et al.,





83 2014; Vallée & Payette, 2007). Although rapid degradation in response to short term climatic events has been 84 observed, typically permafrost degradation has been investigated via long-term monitoring at decadal timescales 85 in response to changes in temperature and precipitation conditions (Åkerman & Johansson, 2008; de la Barreda-86 Bautista et al., 2022; Olvmo et al., 2020; Sannel et al., 2016). These longer-term studies have shown strong 87 relationships between permafrost degradation and summer temperatures, length of the thaw period, winter 88 precipitation and snow depth (Smith et al., 2022). These types of analyses are very useful for quantifying how 89 much of the landscape has already transitioned and understanding the climate change drivers behind these 90 changes, but they do not capture the initial stages of permafrost degradation in palsa peatlands and the lower 91 rates of subsidence that have yet to result in observable changes in the vegetation or thermokarst formation. The 92 latter is crucial to understand the ongoing response of palsa peatlands to climate warming and to predict when 93 pulses of greenhouse gases to the atmosphere and other impacts (e.g., on infrastructure) are likely to occur. 94 Thus, approaches that detect early signs of degradation at landscape scales, with repeated observations, are 95 urgently required.

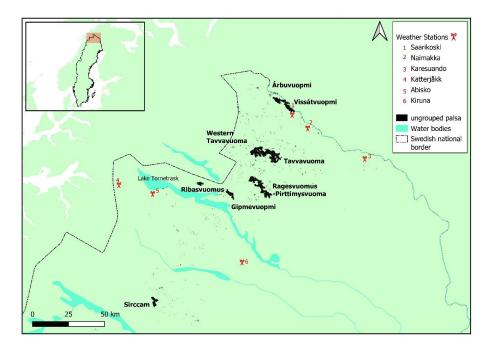
96 Due to the vast extent and remoteness of permafrost areas, we looked to satellite remote sensing to underpin the 97 measurement and monitoring assessment of permafrost peatlands, their degradation and resultant climate 98 impacts (Armstrong McKay et al., 2022; Hugelius et al., 2020; Obu, 2021; Schuur et al., 2015; Swingedouw et 99 al., 2020). Optical remote sensing approaches can be augmented with RaDAR remote sensing methods, 100 including InSAR, to capture the early response of permafrost to warming, since these methods can detect 101 vertical land surface motion at millimetre precision across natural landscapes (Alshammari et al., 2020; 102 Alshammari et al., 2018; de la Barreda-Bautista et al., 2022; Short et al., 2014; van Huissteden et al., 2021) 103 (Bartsch et al., 2016). The regular sampling frequency, insensitivity to cloud and, in the case of Sentinel-1, low 104 cost, means InSAR from Sentinel-1 should be well suited to measure and monitor ongoing changes in 105 permafrost affected by climate change. Further, Sentinel-1 for InSAR is effective at both local and regional 106 scales - the  $20m \times 20m$  spatial resolution enables measurement of surface motion within local sites (de la 107 Barreda-Bautista et al., 2022), and can do so over entire and complex landscapes, such as the circumpolar 108 permafrost region (Reinosch et al., 2020).

109 The overall aim of this study was to carry out a regional-scale analysis of permafrost degradation across the 110 palsa peatlands of northern Sweden, principally using Sentinel-1 InSAR-derived subsidence as an indication of 111 degradation. Pertinent to this is that any InSAR-detected changes can be associated with known and delineated 112 targets in the wider landscape. Furthermore, it is also important to understand any within-site dynamics of 113 permafrost degradation. This paper therefore has specific objectives to: (i) measure the subsidence rate between 114 2017-2021 of all major palsa peatlands in the northern Sweden region; (ii) determine in which palsa peatlands 115 subsidence is greatest, and (iii) assess if the spatial patterns of degradation can be linked to climatic variables 116 and properties of the different sites across the region. To achieve these objectives, we combined large-scale 117 regional analysis with higher resolution site-specific analysis of patterns in subsidence, using a combination of 118 datasets - satellite (Sentinel-1) InSAR; occupied airborne optical and LiDAR; and snow depth, precipitation, and 119 temperature time-series from meteorological stations across the region.

120

### 121 2.0 Methodology

# 122 2.1 Study area


123 This study focused on the northern part of Sweden; a region containing palsa peatlands, located between 68.84-124 67.64° N and 18.71-21.19° E. The palsa peatlands of the region are confined predominantly to valley bottoms in 125 an elevation range between ca. 350 and 590m asl (Fig. 1). The rest of the study area region is comprised of 126 forests and/or mountain land covers (Siewert, 2018). Of all the palsas in the region, the eight largest palsa 127 peatlands complexes range between 50 and 273ha in area (Table 1). These were located across the region, which 128 covers a ca. 20,000km<sup>2</sup> area, with the largest palsa sites located in the north-western parts of the region. Smaller 129 palsa peatlands occur scattered in distribution right across the region. The climate varies across the region from 130 north to south (www.smhi.se). The mean January and July temperatures in Karesuando in the northern part of





- 131 the study region is -16 and 12.8°C, respectively, while in Kiruna, slightly further south, the mean January and
- 132 July temperatures is -11.6 and 13.4C (1991-2020 average). Mean annual precipitation is 443 and 560mm in
- 133 Karesuando and Kiruna, respectively.

#### 134



135

Figure. 1: Map of the palsa peatland complexes in Sweden which were investigated in the study focusing on the
eight named palsa peatlands. The black regions show where 250m buffers around the palsa areas have created
continuous expanses (Backe, 2014). Meteorological station positions used in the study are also indicated.

139

140 We selected larger palsa areas of the region to focus our analysis. This was in line with focus areas by the mapping 141 of palsas undertaken as part of a previous national palsa peatland mapping effort (Backe, 2014). The resultant 142 palsa peatland mapping dataset has a spatial resolution of 100m, with the % palsa cover for each pixel computed, 143 and these pixels given a 250m buffer to produce continuous area outputs. The eight largest continuous areas of 144 these palsa peatlands from the national palsa mapping dataset were selected for this study (Backe, 2014), hereon 145 in referred to as palsa complexes, a term reflecting their mosaic nature of raised palsa plateaux, interspersed with 146 lower lying fen or thermokarst areas. This afforded analyses at a spatial resolution suitable for analysis with 147 Sentinel-1 yet provide practical representation of the condition of the peatland in the region. These eight sites 148 account for the majority of the palsa peatland areas in Sweden, the sites are listed in Table 1 along with some 149 associated information on their status and total and raised palsa plateau areas.

150

151 Table. 1: Information on the major palsa complexes analysed in this paper (Backe, 2014). The protection status

152 means no or limited direct anthropogenic activities that may influence palsa degradation. Total site area is

153 calculated from the total number of  $100m \times 100m$  palsa pixels at each site - these pixels have associated

154 percentages for how much of the 100m x 100m area is palsa. The average of these percentages for each site

155 displays the palsa density at each site. These percentages are then used to calculate the "total palsa area" for

156 *each site based on the original report estimates.* 





| Site Name                      | Protection<br>Classification                                                          | Total site<br>area<br>(ha) | Average<br>extent<br>palsa in<br>these areas<br>(%) | Total palsa<br>area<br>(ha) | Central location<br>(Latitude, Longitude) |
|--------------------------------|---------------------------------------------------------------------------------------|----------------------------|-----------------------------------------------------|-----------------------------|-------------------------------------------|
| Árbuvuopmi                     | Not protected                                                                         | 327                        | 26.3                                                | 86.06                       | 21.03464, 68.83842                        |
| Vissátvuopmi                   | Not protected                                                                         | 867                        | 31.6                                                | 273.75                      | 21.19497, 68.79412                        |
| Tavvavuoma                     | EU Nature 2000 SPA,<br>SAC. Site of National<br>Importance for Nature<br>conservation | 1719                       | 15.8                                                | 271.25                      | 20.85043, 68.51132                        |
| Western Tavvavuoma             | EU Nature 2000 SPA,<br>SAC. Site of National<br>Importance for Nature<br>conservation | 813                        | 13.0                                                | 105.74                      | 20.57727, 68.53953                        |
| Gipmevuopmi                    | Pristine mountain<br>forest, Nature reserve,<br>EU Nature 2000 SCI                    | 303                        | 23.0                                                | 69.62                       | 20.09767, 68.28377                        |
| Ragesvuomus-<br>Pirttimysvuoma | Pristine mountain<br>forest, Nature reserve,<br>EU Nature 2000 SCI                    | 881                        | 6.55                                                | 57.74                       | 20.48660, 68.3741                         |
| Sirccam                        | EU Nature 2000 SCI                                                                    | 397                        | 12.8                                                | 50.70                       | 18.71528, 67.64537                        |
| Ribasvuomus                    | Pristine mountain<br>forest, Nature reserve,<br>EU Nature 2000 SCI                    | 216                        | 23.2                                                | 50.13                       | 19.60100, 68.36116                        |

157

158

# 159 2.2 Datasets

160 The InSAR-derived dataset of surface motion over this northern Sweden region of study was calculated for the 161 period between 2017 to 2021, from single look complex C-band SAR data, captured in Interferometric Wide 162 Swath mode by the Sentinel-1 constellation (European Union's Copernicus Programme; Torres et al., 2012). SAR 163 data input were from the thaw season when there was minimal coverage of snow and ice (i.e., between April and 164 October in each year). Data from descending tracks 168 and 66 were used to cover the target area. Four stacks 165 were processed independently with one from track 168 and three from track 66, which was split into a northern, 166 middle, and southern subsets. The APSIS (formerly ISBAS) method (Sowter et al., 2013; Sowter et al., 2016) was 167 used to characterize surface motion which relaxes the need for consistent phase stability and therefore enables 168 near-complete spatial and temporal coverage over vegetated surfaces (Alshammari et al., 2020; Alshammari et 169 al., 2018; Bradley et al., 2022; Cigna & Sowter, 2017; Gee et al., 2017; Sowter et al., 2016), including those found 170 across snow-free permafrost regions.

171 InSAR processing involved the co-registration of each Sentinel-1 image to a common slant range coordinate 172 system and multi-looking of data by factors of 7 in range and 2 azimuth. This produced a dataset with an 173 approximate spatial resolution of  $20m \times 20m$ . Using a perpendicular baseline of 250m and maximum temporal 174 baseline of 183 days  $\sim$  2100 interferograms were generated per stack. The temporal baseline was chosen to 175 balance the need to reduce the baseline to minimise phase ambiguities and best maintain coherence across the 176 region, whilst also using a baseline long enough to generate season-to-season pairs over consecutive years. This 177 is required over permafrost regions to capture more subtle trends of surface motion during the thaw period (de la 178 Barreda-Bautista et al., 2022; Liu et al., 2010). The interferograms were unwrapped using a modified version of 179 the SNAPHU algorithm. The multi-annual average velocity was calculated for pixels which maintained a 180 coherence greater than 0.45 in a minimum of  $\sim$  650 interferograms, with respect to stable reference points located 181 in the town Kautekenio (N°69.00, E°23.04) for track 168 and Narvik (N°68.44, E°17.42), Kvikkjokk (N°66.95, 182 E°17.72), and Rognan (N°67.09) for the subsets of track 66. The line-of-sight measurements were converted to 183 vertical surface displacement using a cosine correction and finally mosaicked into a single deformation product. 184 Localised UAV studies at sites in Sweden have verified the accuracy of using InSAR to monitor permafrost 185 degradation (de la Barreda-Bautista et al., 2022).





186 In order to interpret the resultant surface motion dataset produced by the ASPIS InSAR method, two sets of 187 additional data were sourced: (i) higher resolution remote sensing data and (ii) meteorological data. The former 188 included orthophotos captured of the eight target areas by occupied airborne surveys commissioned by the 189 Swedish Survey (www.lantmateriet.se; © Lantmäteriet). The orthophotos were panchromatic, with each scene 190 covering a 5km  $\times$  5km area, at a 0.5m spatial resolution, the majority were captured in 2016, although gaps were 191 filled with imagery from 2010 and 2008. The Swedish National Digital Elevation Model (DEM), was also used 192 in this study. The DEM was derived via occupied airborne LiDAR data capture in 2016 and processed to compute 193 elevation at 2m spatial resolution across Sweden (www.lantmateriet.se; © Lantmäteriet). The orthophotos and 194 DEM provided elevation and landscape characteristics (geomorphic features) for use in this study. The 195 meteorological data was captured by the Swedish Metrological and Hydrological Institute (www.smhi.se) at 196 meteorological stations across the region. Specifically, the air temperature, precipitation, and snow depth data, 197 were sourced and used from specific stations, i.e., those located closest to the palsa complexes under investigation 198 namely at Katterjåkk, Abisko, Kiruna and Karesuando, Saarikoski/Naimakka (Fig. 1).

199

#### 200 2.3 Data analyses

The ASPIS InSAR surface motion dataset was resampled using the mean value from the original 20m × 20m to match the 100m × 100m spatial resolution of the palsa peatland dataset which makes up the eight palsa complexes (Backe 2014). From this the frequency distributions of ASPIS InSAR surface motion at these eight palsa complexes, and over all individual palsa peatland pixels in the region, were produced. Using these data, the maximum and minimum rates of surface motion at each site was determined, as well as the sum of the pixels with palsas that showed subsidence. These derived data relating to surface motion were further interpreted using the orthophotos and DEMs, supported by the meteorological data.

208 The DEM tiles were joined together and clipped to the eight palsa complexes. Following this, the degree of elevation roughness was calculated, via the native topographic roughness index function (Riley, DeGloria, & 209 210 Elliot, 1999). This roughness index was thresholded at > 0.5 to provide a visual depiction of palsa landform edges 211 in the otherwise typically even terrain of the valley bottoms where the palsas occur. The roughness data was 212 visually compared to the orthophotos from a subset of areas to assess its potential for delineating palsas and this 213 allowed us to determine a threshold value that connected these continuous terrain variables to the specific features 214 of the palsa complexes, such as the raised mound structure of the palsa – so-called palsa mounds (Franklin, 2020). Hillshade was also calculated via the native QGIS function using the default formula, which uses a lighting effect 215 216 to visualise the roughness of the terrain from differences in local elevation (QGIS, 2022). The roughness, 217 hillshade, and elevation outputs were overlaid on the mapped palsa tiles to provide higher resolution visual 218 interpretation. The roughness and elevation outputs were also resampled to the resolution of the mapped palsa 219 tiles (100m x 100m) to enable statistical comparison. The zonal statistics tool was used to extract mean average 220 values from the resulting roughness and elevation outputs for the 100m spatial resolution mapped palsa tiles.

221 Mean annual, maximum, and minimum daily air temperature, precipitation, and depth of ground snow for the 222 period 2000 to 2022 from the meteorological station nearest to a correspondent palsa complex were extracted and 223 analysed. The Naimakka station did not provide snow depth and the Saarikoski station did not provide air 224 temperature, however, it was deemed that at the regional scale of this study these sites were sufficiently close 225 together (18km) to be interchangable. Subsequently, data was averaged to provide an annual measurement of each 226 meteorological variable for each station/palsa complex. Due to incomplete meterological datasets, a longer-term 227 record of the meteorological variables was not possible for all sites. However, long-term climate data (>100years) 228 was available from three meteorological stations in the region: namely, Karesuando, Kiruna, and Abisko. This 229 data was used to assess temporal variability in annual, winter (December, January and February (DJF)) and 230 summer (June, July, and August (JJA)) temperature, precipitation and snowfall since the start of records across 231 the region. Descriptive statistics (mean, minimum, maximum and inter-quartile range) were produced to express 232 the regional differences between these sites. Lastly, to complement the point based meteorological (both weather 233 and climate) data, we used modelled permafrost probabilities based on climatic conditions to explore relationships 234 between climatic conditions and subsidence rates (Obu et al., 2018). In this context, it is worth noting that there 235 may be a mismatch between the modelled permafrost distribution and permafrost in palsa peatlands as this can, 236 in some areas, be a relic of cooler climatic conditions. The mean values from these data on permafrost probability 237 were used to resampleto a 100m spatial resolution to enable comparison with the other data sets.





238 To analyse the relationships between surface motion, roughness and percent palsa in each 100m by 100m pixel 239 stratified by palsa complex, SciPy statistics (Virtanen et al., 2020) was used to obtain Pearson's correlation 240 statistics. Pandas (McKinney, 2011) and NumPy (Harris et al., 2020) were used for data management. All scripts 241 are available on the project GitHub (https://github.com/SamValman/Permafrost\_Sweden). The relationship 242 between the meteorological variables both over the last two decades at the weather stations closest to the palsa 243 complexes and duration of the climate record at the three weather stations with the longest data series were 244 assessed using regression analysis in Genstat (VNS Ldt). Some of time series were incomplete, in these instances 245 the analysis was conducted using the slightly shorter time series.

246

#### 247 3.0 Results

248 The ASPIS InSAR-derived surface motion outputs for the time-period of interest (2017-2021), ranged between -

249 9.9 and 7.7mm yr<sup>-1</sup> across all of the palsa measured, with a mean of 0.05, median of 0.2 and range of 17.7mm yr<sup>-1</sup>

<sup>1</sup>. Focusing solely on the eight palsa complexes provided greater insight and excluded the most extreme uplift values from scattered individual palsa (Table 2).

252

253 Table. 2: InSAR subsidence and uplift measurements of the palsa complexes defined in Figure 1 and Table 1.

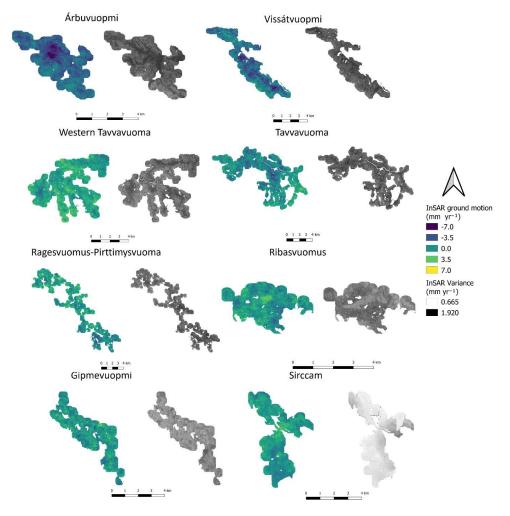
The total palsa area were used to isolate and extract ASPIS InSAR measurements of surface motion at each of the eight sites.

| Site           | Max<br>subsidence<br>(mm yr <sup>-1</sup> ) | Max uplift<br>(mm yr <sup>-1</sup> ) | Subsiding area<br>(ha) | Area subsiding<br>>3.5 mm yr <sup>-1</sup><br>(ha) |
|----------------|---------------------------------------------|--------------------------------------|------------------------|----------------------------------------------------|
| Árbuvuopmi     | -9.9                                        | 1.7                                  | 321.3                  | 138.4                                              |
| Vissátvuopmi   | -8.9                                        | 3.5                                  | 796.2                  | 204.8                                              |
| Tavvavuoma     | -6.4                                        | 6.6                                  | 1009.4                 | 50.9                                               |
| Western        |                                             |                                      |                        |                                                    |
| Tavvavuoma     | -5.1                                        | 6.3                                  | 215.0                  | 1.0                                                |
| Gipmevuopmi    | -6.9                                        | 6.3                                  | 117.2                  | 1.8                                                |
| Ragesvuomus-   | -5.9                                        | 5.7                                  | 358.6                  | 7.4                                                |
| Pirttimysvuoma |                                             |                                      |                        |                                                    |
| Sirccam        | -3.1                                        | 5.4                                  | 135.3                  | 0.0                                                |
| Ribasvuomus    | -6.5                                        | 5.5                                  | 93.6                   | 0.7                                                |

256

257

258 The spatial plots of surface motion for each palsa complex displayed in Figure 2, illustrates a spatiality in terms


259 of surface motion (both subsidence and uplift and associated variance) across this northern Sweden region. This

260 is evident both within the palsa complexes and between the complexes.

261

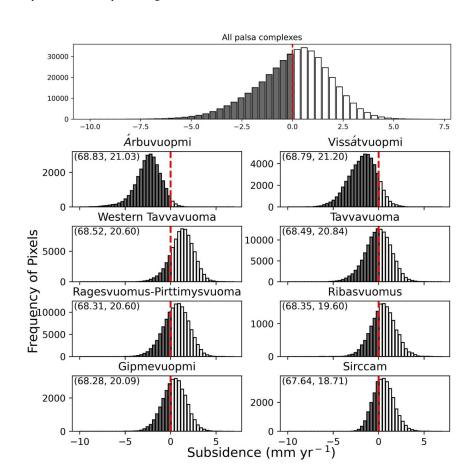






262 263

Figure. 2: Palsa ground motion measured using Satellite InSAR showing differing levels of degradation across
the eight study sites. Sites are ordered by their latitudinal position. Negative values correspond to subsidence.
Note that in order to plot continuous areas the scenes shown are the palsa peatland area plus a 250m buffer
around each 100m ×100m pixel that cover a minimum of 1% palsa (Backe 2014). This means that areas of nonpalsa peatland and some areas with mineral soil are included in the figure. ASPIS InSAR variance were less
than 1.5mm yr<sup>-1</sup> in over 90% of pixels.


270

271 Subsidence was recorded in just under half of the pixels all the eight palsa complexes (Table 2). Across the target 272 sites 3046.6ha (Table 2) out of the total site area of 5523ha (Table 1) were subsiding, which equates to ca 55% of 273 the total palsa complexes' area. Out of the subsiding parts of the palsa complexes, 405ha were subsiding at rates 274 >3.5mm yr<sup>-1</sup> at near gaussian distribution. However, it is evident from the frequency distribution plots, that it is in 275 the palsa complexes in the far north of the region that subsidence dominated the surface motion measured (Table 276 2, Figure 3). At Vissátvuompi and Árbuvuopmi 98 and 92% of the palsa complexes were subsiding with maximum 277 subsidence rates of -9.9 and -8.9mm yr<sup>-1</sup>, respectively. The measured area affected by high subsidence rates of 278 between (>3.5mm yr<sup>-1</sup>) were 204.8ha and 138.4ha at Vissátvuompi and Árbuvuopmi, respectively. This means 279 that ca. 30% of the total combined area of these two sites (1194ha) is in the highest range of subsidence. The high





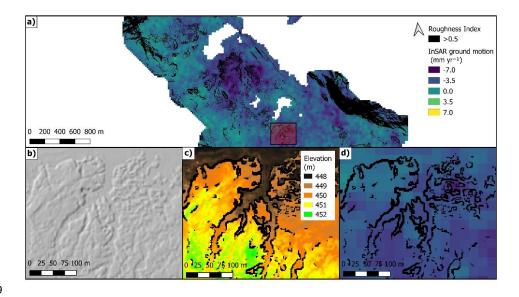
degree of palsa subsidence at Vissátvuompi and Árbuvuopmi was confirmed by field observations at these sites (Sofie Sjogersten, pers. Obs.): Both sites showed signs of active lateral erosions, large scale subsidence and thermokarst formation. The more southerly sites also show subsidence, although rates were much lower, with the -1 and 1mm yr<sup>-1</sup> range being most common (Fig. 3). Areas further to the south and west showed signs of uplift, particularly the western parts of Tavvavuoma and Ribasvuomus with maximum rates of uplift of 6.3mm across some smaller parts of these sites. However, all sites have some degree of subsidence, albeit at a lower rate compared to the heavily subsiding northern sites.



287

288

Figure. 3: Distribution of 20m ×20m ASPIS InSAR pixels within each of the palsa complexes in this study and
the overall trend of the dataset according to the distribution of pixel moving in a particular direct and a given
rate. Shaded areas with negative values correspond to subsidence. The dashed central lines indicate pixels in
stable areas with no motion. Central point latitude and longitude is provided for each site in brackets for each
site.


294

Calculating the roughness index from the DEMs at each palsa complex enabled differentiation of palsa from surrounding lower lying and flat fen areas. Representative example complexes are shown in Figures 4 and 5 -Vissátvuopmi and Western Tavvavuoma, Overall, the palsa complexes to the north (e.g., Fig. 4b, c) display a more pronounced topography across the focus areas than the more south-westerly ones (e.g., Fig. 5b, c). There was clear correspondence between density of palsa and subsidence, i.e., areas with more palsa showed more subsidence (Fig. 4a, d). Furthermore, the palsa complexes showed greater elevation variation compared to





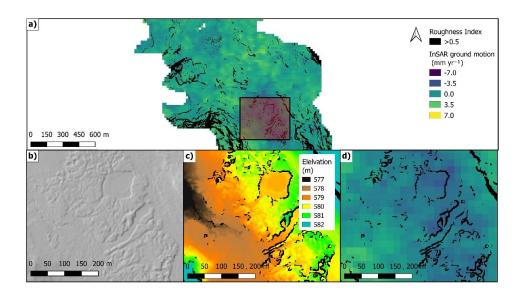
301 surrounding fen areas and were more densely clustered to the north than in the more south westerly sites. These 302 features spatially coincided with higher subsidence. Substantial within site variability in subsidence was evident, 303 where the pixels with the highest subsidence rates being clustered together and following landscapes features, 304 e.g., palsa plateau edges. It was evident that many separate palsa complexes in an area resulted in a high degree 305 of elevation change, causing a high roughness index. In turn, areas with high roughness have the greatest subsidence (Fig. 4,5). Visual comparison between orthophotos and roughness showed that areas of high roughness 306 307 corresponded well with areas of severe permafrost degradation (as indicated by lateral erosion and thermokarst 308 formation).



309

310 Figure. 4: Visual analysis of Vissátvuopmi one of the sites where the most subsidence was found to be

311 occurring. Evaluation of correspondence of hillshade DEM (b), DEM (c) and InSAR subsidence (d) with Palsa


312 complexes suggested by roughness overlays. The positioning of b,c, and d within the larger site (a) show bands

313 of subsidence in proximal to roughness patches suggesting Palsa.

314





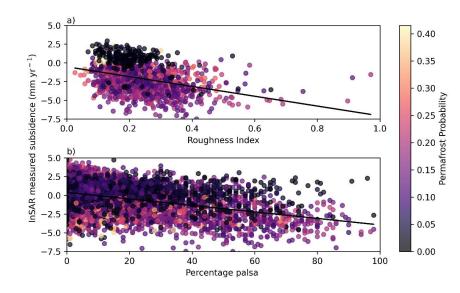


315

**316** Figure. 5: Visual analysis of Tavvavuoma which was found to have much lower levels of subsidence in

317 comparison to more northern sites. Evaluation of correspondence of hillshade DEM (b), DEM (c) and InSAR

subsidence (d) with Palsa complexes suggested by roughness overlays. The positioning of b,c, and d within the
 larger site (a) show many less bands of subsidence and potential palsa than Figure 4.

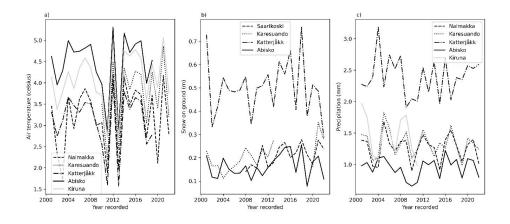

320

Regression analysis showed a relationship between roughness and subsidence as sites with greater subsidence were also found to have greater roughness (Fig. 6a). Higher percentage palsa in a location was linearly related to subsidence with the greatest subsidence found in areas with the highest percentage palsa cover (Fig. 6b). It was also clear that the modelled permafrost probability did not correspond to the percentage of palsa, i.e. pixels with

325 100% palsa are in some instances predicted to have no permafrost (Fig. 6b).








326

**327** Figure. 6: Relationship between a) the roughness index; p < 0.001,  $R^2 = 0.35$  and b) percentage palsa in a **328** pixel; p < 0.001,  $R^2 = 0.41$  and subsidence. The colours indicated for each data point are the analysed **329** probability (on a scale from 0 to 1) that an area would include permafrost, (Obu et al., 2018). Note that there is **330** less data for the analysis of roughness as the roughness was characterized only for the eight study sites and not

333

334 The analysis of the metrological data showed variability in both weather and climate across the study region in 335 part reflecting the patterns in the subsidence data. The warmest minimum and maximum temperatures, -29.2 and 336 32.8°C respectively, were recorded for the palsa complexes north of Lake Tornetrask, i.e. Gipmevuomi and 337 Ribasvuomus (Abisko weather station) (Fig. 1). The temperature in the area of Árbuvuopmi, Vissátvuopmi, and 338 Tavvavuoma palsa complexes (Saarikoski/Naimaka and Karesuando weather stations) ranged between -39.4 and 339 30.5°C (Table 3, Fig. 7a). The Katterjåkk weather station located in the mountains close to the Norwegian border 340 recorded the greatest annual snow depth measure of 229cm and a mean of 50cm. Note that in this far western part 341 of the study area palsa peatland were not present anymore. In contrast, the three other sites had comparable annual 342 snow depth with a mean of 20-30cm (Table 3, Fig. 7b).



all palsa areas. Roughness values from valley sides (which at time were included in the buffer areas) are not
 used in the figure.





344 Figure. 7: a) Mean annual daily maximum temperature, b) snow depth on the ground, and c) daily precipitation

345 at the meteorological stations in the study region (SMHI 2022).

346

347

348 Table. 3: Temperature and snowfall descriptive statistics. The snow depth data are estimated from days with

349 snow on the ground. Mean annual temperature and precipitation are averaged from 2000 to 2021. Maximum,

350 minimum and the inter-quartile range of daily maximum temperature and daily precipitation since 2000 are

351 also shown. Some weather stations lack certain years but were considered to have adequate coverage for this

352 task while two sites did not have sufficient data collection during the time period to be reliable and were shaded 353 out.

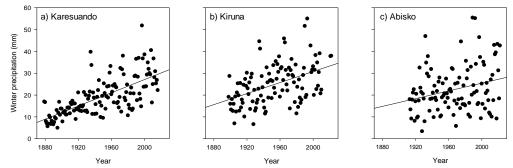
354

|                    | Temperat       | ure (°C)     |              |              | Snow dep       | oth (m)      |              | Precipita      | tion (mm)    |              |
|--------------------|----------------|--------------|--------------|--------------|----------------|--------------|--------------|----------------|--------------|--------------|
| Weather<br>Station | Mean<br>annual | Max<br>daily | Min<br>daily | IQR<br>daily | Mean<br>annual | Max<br>daily | IQR<br>daily | Mean<br>annual | Max<br>daily | IQR<br>daily |
| Naimakka           | -1.40          | 29.5         | -38.2        | 15.7         |                |              |              | 456            | 50.8         | 1.0          |
| Saarikoski         |                |              |              |              | 76.9           | 0.85         | 0.43         | 422            | 43.6         | 0.9          |
| Karesuando         | -0.70          | 30.5         | -39.4        | 16.9         | 75.1           | 1.00         | 0.40         | 490            | 53.2         | 1.1          |
| Katterjåkk         | -0.32          | 29.5         | -27.6        | 13           | 183.0          | 2.29         | 0.97         | 875            | 104.3        | 3            |
| Abisko             | 0.53           | 32.8         | -29.2        | 13.5         | 60.0           | 1.27         | 0.42         | 348            | 61.9         | 0.6          |
| Kiruna             | 0.06           | 30.3         | -30.6        | 15.6         | 5.3            | 1.13         | 0.45         | 545            | 53.1         | 0.9          |

355

356

357 There was no detectable difference in climatic trends among the meteorological weather stations since 2001 (p > 100)


358 0.05). In contrast, the longer-term climate records show a strong increase in winter precipitation over the last 140

359 years at Karesuando, the northern most weather station ( $F_{1,136}$ =122.33, p < 0.001;  $\Box^2$ =47.0 %; Fig. 8a). This long-

360 term trend was also evident, albeit less strong, in Kiruna ( $F_{1,110} = 28.17$ , p < 0.001;  $\Box^2 = 19.7$  %; Fig. 8b). In Abisko, 361

the pattern of increasing in winter (DJF) precipitation was less clear ( $F_{1,108}$ =8.29, p < 0.01;  $\Box^2$ =6.3 %; Fig. 8c). 362 Snow depth, temperature, and summer precipitation (JJA) did not show clear temporal trends (data not shown).

363



365 Figure 8. Mean winter (DJF) precipitation over time at a) Karesuando, b) Kiruna, and c) Abisko, significant 366 trendlines are shown.

367

364

#### 368 4. Discussion

369 By way of satellite ASPIS InSAR-derived surface motion and associated spatial and statistical analyses, we

370 have demonstrated on-going, subsidence in the palsa peatlands of northern Sweden driven by a warming

371 climate. Based on the compelling agreement of subsidence with palsa landforms and their roughness, we

372 interpret this as permafrost degradation, i.e., thaw of the permafrost core within palsas and disintegration of





373 these landforms. This is in line with a wide range of literature (see introduction) and concurs with the local-scale

- 374 studies in the area undertaken using both satellite- and field-based methods (de la Barreda-Bautista et al., 2022;
- 375 Olvmo et al., 2020; Sannel, 2020; Sannel et al., 2016; Sannel & Kuhry, 2011), as well as with, the severe

climate warming impacts on temperatures and precipitation noted in the region (Hänsel, 2020; Irannezhad et al.,
 2017: Vikhamar-Schuler et al., 2016) and the modelled predictions of total loss of permafrost across the region

2017; Vikhamar-Schuler et al., 2016) and the modelled predictions of total loss of permafrost across the regionwithin decades (Fewster et al., 2022). We suggest that the surface subsidence of the sample palsa complexes

379 while decades (Fewster et al., 2022). We suggest that the subsidence of the sample para complexes 379 measured in this study, together with complementary work in Norway (Borge et al., 2017), can be taken as

380 evidence of significant permafrost degradation in all palsa peatland areas across northern Fennoscandia.

381 The processes driving the degradation of the permafrost, as measured by the ASPIS InSAR-derived subsidence 382 data, are complex. Although permafrost degradation was observed in all the palsa complexes, rates varied both 383 within and among palsa complexes (Table 2, Fig. 2 and 3). Overall, the InSAR subsidence data demonstrates a 384 north to south gradient in increasing degradation. This indicates that local factors, such as local climate warming 385 responses or permafrost temperature, determine the sensitivity of particular areas and that regional climatic 386 gradients play a role in the long-term trajectory of these ecosystems (Johansson et al., 2011; Olvmo et al., 2020). 387 In particular, winter precipitation is generally considered a strong predictor of permafrost degradation due to the 388 highly insulating properties of snow, preventing heat dissipation during winter (Olvmo et al., 2020; Seppälä, 389 2011). This points to increased winter precipitation in the part of the northern most part of study areas as a 390 driver of the higher subsidence rates at the northern most palsa complexes (Table 2 and Fig. 7a). Interestingly, 391 climate data from the last two decades did not reveal strong differences in climatic conditions over the area. This 392 suggests that long-term trends combined with a buffered system reaction to change are driving regional patterns 393 in permafrost degradation.

394 It could also be the case that the observed north to south gradient of subsidence rates reflect different phases of 395 progression in an ongoing trend of permafrost degradation across the study region of northern Sweden. It is 396 plausible that the degradation process has progressed further at the more southern sites, reflecting higher 397 permafrost temperatures, and that as a result, subsidence rates have now slowed. All the while at the northern 398 sites, which still have a high cover of palsa: 26.3 and 31.6 % at Árbuvuopmi and Vissátvuopmi respectively, 399 show high subsidence rates. This is supported by research showing rapid permafrost degradation in the 400 southernmost palsa complexes in Sweden (Zuidhoff, 2002; Zuidhoff & Kolstrup, 2000) and in the area around 401 and to the south of Tornetrask, since the 1960's (Åkerman & Johansson, 2008; de la Barreda-Bautista et al., 402 2022; Varner et al., 2022). However, permafrost degradation in palsa peatlands has progressed over longer-time 403 periods even in the far north of Scandinavia. Here palsas' have decreased in areal extent by 33-71% over ca. 60 404 years, with more rapid contraction in recent years in Finmarkvidda, Norway and 54% in Vissátvuopmi, northern 405 most Sweden (Borge et al., 2017; Olvmo et al., 2020) and total loss of palsa complexes has been recorded in the 406 far north eastern parts of Norway (Vorren 2017).

407 Although there are differences in subsidence rates among sites the region wide permafrost degradation reflects 408 ongoing climatic trends (Fig. 2 and 6). Since 1901 Scandinavia's climate has become wetter as well as warmer 409 with a greater proportion of the precipitation falling as rain relatively to snow (Hänsel, 2020; Irannezhad et al., 410 2018; Irannezhad et al., 2017; Vikhamar-Schuler et al., 2016). These trends are reflected in the far north where 411 higher air temperatures, greater precipitation and snow depths has already shifted climatic conditions, in parts of 412 the region, away from those that support permafrost in peatlands e.g. since the 1940's (Åkerman & Johansson, 413 2008; Borge et al., 2017; Olvmo et al., 2020). Further, deep permafrost boreholes show decadal signals of 414 increasing temperatures in the Scandes mountains suggesting that warmer temperatures have been impacting 415 permafrost since the 1920's (Isaksen et al., 2007). Hence, is seems that climate warming has been impacting 416 permafrost in Scandinavia for at least 100 years.

417 As a result of the ongoing trend of increasing permafrost temperatures in palsa peatlands in Scandinavia, their

418 permafrost temperatures are now close to 0°C, making them very vulnerable to decay in response to further

419 increases in temperatures (Christiansen et al., 2010; Farbrot et al., 2013). Palsa formation is closely linked to the

420 mean annual temperature, with temperatures between -1 to -2°C over consecutive years needed as a threshold for

- 421 palsas to form (Vorren, 2017). In this context it is important to note that the MAT in the area was between 0.53
- 422 and -1.4°C since 2000 suggesting that at least in parts of the study area the climatic conditions do not support
- 423 formation of palsa anymore while conditions are marginal for palsa preservation in the entire region.





424 Although subsidence dominated in the northern sites, uplift was also noted in the study region. Mechanisms that

- 425 may explain patterns of uplift are formation of new palsa as well as short-lived frost mounds that can form
- 426 temporarily in the palsa system (Zuidhoff, 2002). Further mechanisms that may result in uplift are changes in
- 427 the water level of the flooded parts of the peatlands as well as accumulation of plant residues from the
- 428 productive fen vegetation parts of the study sites on the peatland surface, reflecting adaptation of the local
- 429 ecosystem to degraded palsa mounds reflected by changes in remotely sensed terrain surface.

430 In addition to demonstrating regional permafrost degradation in northern Fennoscandia this work also provides 431 proof of concept for circumpolar assessments of permafrost degradation using ASPIS InSAR. It enables 432 detection of the areas with rapidly degrading permafrost and deepening active layers but also peat consolidation 433 in areas that has already lost its permafrost (de la Barreda-Bautista et al., 2022). The fact that InSAR data is 434 integrated over  $20m \times 20m$  pixels means that the signal of local level degradation may be somewhat dampened 435 (de la Barreda-Bautista et al., 2022). However, the high precision of the change in vertical position means that 436 InSAR is an important tool to employ to detect the initial stages of large-scale permafrost degradation. 437 Currently, the study of long-term trends and drivers using InSAR is somewhat limited by the short collection 438 period of Sentinel 1, but as more data are continued to be collected, methods such as non-linear time series 439 creation will become viable to compare subsidence directly to longer climatic drivers. However, the large scale 440 baseline assessment of permafrost subsidence, developed here, provides an initial assessment of ongoing 441 subsidence. would be advantageous should field monitoring be arranged in the future. As a complement to the 442 ASPIS-InSAR data, the novel roughness thresholding method used here together with contextual data proved a 443 powerful tool to map and monitor changes (Franklin, 2020; Konig et al., 2019; Otto et al., 2012). This approach 444 could be developed using machine learning methods to model palsa dynamics to better automate the extraction 445 of palsa landform positions (Konig et al., 2019; Luoto & Seppälä, 2002). If accomplished, the operating extent 446 of this tool could be vastly increased using the Arctic 2m DEM dataset over area were its quality is high enough 447 to allow high resolution mapping of the degrading edges of raised palsa plateaus (Morin, 2016). Together the 448 ASPIS-InSAR and the DEM derived roughness index metrics offer novel ways of large scale monitoring of 449 permafrost degradation. This will help to quantify the rate of palsa ecosystem collapse and transition to a non-450 permafrost state.

451 We conclude that permafrost degradation of palsa peatlands is occurring across northern Sweden, with the 452 greatest rates of degradation and largest areas impacted being Swedens two largest permafrost peatland 453 complexes in the far north. This raises serious concerns that these systems will lose their permafrost entirely in 454 the coming decades especially as climatic conditions are approaching the limits of sustaining palsa peatlands 455 (Fewster et al., 2022). The implications of this rapid loss of permafrost is ecosystem collapse and loss, as the 456 permafrost core is fundamental to the existence of palsa peatlands. Future research should focus on the 457 implications of this collapse on increased CH<sub>4</sub> emissions (Glagolev et al., 2011; Turetsky et al., 2020; Varner et 458 al., 2022), carbon loss (Hugelius et al., 2020), and thus the potential for strong climate feedbacks (IPCC, 2021) 459 as well as using longer-time InSAR data as this becomes available to investigate regional variations in climatic 460 drivers of permafrost degradation. Further, our study demonstrates that InSAR together with terrain data can be 461 applied over continuous natural surfaces at a regional-scale to monitor permafrost degradation in palsa 462 peatlands, offering a tool for circumpolar monitoring of climate warming impact on these systems.

463

# 464 5. Acknowledgement

465 This work was supported by funding from the University of Nottingham, UK, EU-InterAct funding via the

 466
 InterAccess programme and the Swedish research council (VR-2021-05767 to M. Siewert). Associated

467 fieldwork was supported by the Climate Impacts Research Centre (CIRC) at Umeå University. Samuel Valman

468 was supported by the EPSRC funded Geospatial Centre for Doctoral Training (EP/S023577/1).

469

#### 470 6. Author contributions

471 SV: Carried out the majority of the data analysis and made a significant contribution to data interpretation, writ-

472 ing and finalising the manuscript text. Both SV and MS can be considered to have contributed equally to this

473 work.





- 474 MS: Contributed to the conception of the study, contributed DEM and orthophoto data, carried out fieldwork to
- 475 assess permafrost degradation, contributed and advised on data analysis and interpretation, contributed to struc-
- 476 turing, writing, and refining the text. Both MS and SV can be considered to have contributed equally to this
- 477 work.
- 478 DB: Contributed to the conception of the study, advised on the data analysis, and made a significant contribution
- to finalising the text.
- 480 ML: Provided data analysis, support on the InSAR processing, data interpretation, and writing of the text.
- 481 DG: Carried out the initial InSAR data processing
- 482 BBB: Contributed to the conception of the study and refining the text.
- 483 AS: Contributed to the conception of the study and advised on the InSAR data processing
- 484 SS: Conceived and directed the study, contributed to data analysis, carried out fieldwork to assess permafrost
- 485 degradation and made a significant contribution to formulating and finalising the text.
- 486 SS, DB, AS and MS secured the funding for the project.
- 487 Code Availability
- 488
- 489 All the python scripts used to carry out these analyses are available at the github repository:
- 490 <u>https://github.com/SamValman/Permafrost\_Sweden</u>.491

#### 492 Data Availability statement

493

494 The Sentinel-1 datasets are freely available and can be obtained by searching and downloading the Interferometric Wide (IW) swath mode products for orbit track numbers ?? and ?? through the Copernicus Open Access Hub (https://scihub. copernicus.eu/dhus/#/home). The processed interferometric data and deformation maps are commercially sensitive and may be made available on reasonable request by email addressed to the corresponding author. All other datasets produced during this project will be uploaded on zenodo and the DOI provided once

- the article has been accepted.
- 500

501

502

# 503 References

| 504 | Åkerman, H. J., & Johansson, M. (2008). Thawing permafrost and thicker active layers in sub-arctic Sweden.   |
|-----|--------------------------------------------------------------------------------------------------------------|
| 505 | Permafrost and Periglacial Processes, 19(3), 279-292. https://doi.org/10.1002/ppp.626                        |
| 506 | Alshammari, L., Boyd, D. S., Sowter, A., Marshall, C., Andersen, R., Gilbert, P., Marsh, S., & Large, D. J.  |
| 507 | (2020). Use of Surface Motion Characteristics Determined by InSAR to Assess Peatland Condition               |
| 508 | [https://doi.org/10.1029/2018JG004953]. Journal of Geophysical Research: Biogeosciences, 125(1),             |
| 509 | e2018JG004953. https://doi.org/https://doi.org/10.1029/2018JG004953                                          |
| 510 | Alshammari, L., Large, D. J., Boyd, D. S., Sowter, A., Anderson, R., Andersen, R., & Marsh, S. (2018). Long- |
| 511 | Term Peatland Condition Assessment via Surface Motion Monitoring Using the ISBAS DInSAR                      |
| 512 | Technique over the Flow Country, Scotland. Remote Sensing, 10(7).                                            |
| 513 | https://doi.org/10.3390/rs10071103                                                                           |
| 514 | Armstrong McKay, D. I., Staal, A., Abrams, J. F., Winkelmann, R., Sakschewski, B., Loriani, S., Fetzer, I.,  |
| 515 | Cornell, S. E., Rockström, J., & Lenton, T. M. (2022). Exceeding 1.5 □C global warming could trigger         |
| 516 | multiple climate tipping points. Science, 377(6611), eabn7950.                                               |
| 517 | https://doi.org/doi:10.1126/science.abn7950                                                                  |
| 518 | Backe, S. (2014). Kartering av Sveriges palsmyrar. Länsstyrelsen. Ballantyne C. K. (2018). Periglacial       |
| 519 | geomorphology. John Wiley & Sons.                                                                            |
| 520 | Bartsch, A., Widhalm, B., Kuhry, P., Hugelius, G., Palmtag, J., Siewert, M.B., 2016. Can C-band synthetic    |
| 521 | aperture radar be used to estimate soil organic carbon storage in tundra? <i>Biogeosciences</i> , 13, 5453-  |
| 522 | 5470.                                                                                                        |
| 523 | Biskaborn, B. K., Smith, S. L., Noetzli, J., Matthes, H., Vieira, G., Streletskiy, D. A., Schoeneich, P.,    |
| 524 | Romanovsky, V. E., Lewkowicz, A. G., Abramov, A., Allard, M., Boike, J., Cable, W. L.,                       |
| 525 | Christiansen, H. H., Delaloye, R., Diekmann, B., Drozdov, D., Etzelmüller, B., Grosse, G., Lantuit           |
| 526 | H. (2019). Permafrost is warming at a global scale. <i>Nature Communications</i> , 10(1), 264.               |
| 527 | https://doi.org/10.1038/s41467-018-08240-4                                                                   |
| 528 | Borge, A. F., Westermann, S., Solheim, I., & Etzelmüller, B. (2017). Strong degradation of palsas and peat   |
| 529 | plateaus in northern Norway during the last 60 years. The Cryosphere, 11(1), 1-16.                           |





| 531<br>532<br>533 | Bradley, A. V., Andersen, R., Marshall, C., Sowter, A., & Large, D. J. (2022). Identification of typical<br>ecohydrological behaviours using InSAR allows landscape-scale mapping of peatland condition. <i>Earth</i><br><i>Surf. Dynam.</i> , 10(2), 261-277. https://doi.org/10.5194/esurf-10-261-2022 |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 534               | Chadburn, S. E., Burke, E. J., Cox, P. M., Friedlingstein, P., Hugelius, G., & Westermann, S. (2017). An                                                                                                                                                                                                 |
| 535               | observation-based constraint on permafrost loss as a function of global warming. <i>Nature Climate</i>                                                                                                                                                                                                   |
| 536               | Change, 7(5), 340-344. https://doi.org/10.1038/nclimate3262                                                                                                                                                                                                                                              |
| 537               | Christiansen, H. H., Etzelmüller, B., Isaksen, K., Juliussen, H., Farbrot, H., Humlum, O., Johansson, M.,                                                                                                                                                                                                |
| 538               | Ingeman-Nielsen, T., Kristensen, L., Hjort, J., Holmlund, P., Sannel, A. B. K., Sigsgaard, C., Åkerman,                                                                                                                                                                                                  |
| 539               | H. J., Foged, N., Blikra, L. H., Pernosky, M. A., & Ødegård, R. S. (2010). The thermal state of                                                                                                                                                                                                          |
| 540               | permafrost in the nordic area during the international polar year 2007–2009. <i>Permafrost and</i>                                                                                                                                                                                                       |
| 541               | Periglacial Processes, 21(2), 156-181. <u>https://doi.org/https://doi.org/10.1002/ppp.687</u>                                                                                                                                                                                                            |
| 542               | Cigna, F., & Sowter, A. (2017). The relationship between intermittent coherence and precision of ISBAS InSAR                                                                                                                                                                                             |
| 543               | ground motion velocities: ERS-1/2 case studies in the UK. Remote Sensing of Environment, 202, 177-                                                                                                                                                                                                       |
| 544               | 198. https://doi.org/https://doi.org/10.1016/j.rse.2017.05.016                                                                                                                                                                                                                                           |
| 545               | de la Barreda-Bautista, B., Boyd, D. S., Ledger, M., Siewert, M. B., Chandler, C., Bradley, A. V., Gee, D.,                                                                                                                                                                                              |
| 546               | Large, D. J., Olofsson, J., Sowter, A., & Sjögersten, S. (2022). Towards a Monitoring Approach for                                                                                                                                                                                                       |
| 547               | Understanding Permafrost Degradation and Linked Subsidence in Arctic Peatlands. <i>Remote Sensing</i> ,                                                                                                                                                                                                  |
| 548               | 14(3). https://doi.org/10.3390/rs14030444                                                                                                                                                                                                                                                                |
| 549               | Douglas, T. A., Hiemstra, C. A., Anderson, J. E., Barbato, R. A., Bjella, K. L., Deeb, E. J., Gelvin, A. B.,                                                                                                                                                                                             |
| 550               | Nelsen, P. E., Newman, S. D., Saari, S. P., & Wagner, A. M. (2021). Recent degradation of interior                                                                                                                                                                                                       |
| 551               | Alaska permafrost mapped with ground surveys, geophysics, deep drilling, and repeat airborne lidar.                                                                                                                                                                                                      |
| 552               | <i>The Cryosphere</i> , <i>15</i> (8), 3555-3575. <u>https://doi.org/10.5194/tc-15-3555-2021</u>                                                                                                                                                                                                         |
| 553               | Douglas, T. A., Jorgenson, M. T., Brown, D. R. N., Campbell, S. W., Hiemstra, C. A., Saari, S. P., Bjella, K., &                                                                                                                                                                                         |
| 554               | Liljedahl, A. K. (2015). Degrading permafrost mapped with electrical resistivity tomography, airborne imagery and LiDAR, and seasonal thaw measurements. <i>GEOPHYSICS</i> , 81(1), WA71-WA85.                                                                                                           |
| 555<br>556        | https://doi.org/10.1190/geo2015-0149.1                                                                                                                                                                                                                                                                   |
| 557               | Farbrot, H., Isaksen, K., Etzelmüller, B., & Gisnås, K. (2013). Ground Thermal Regime and Permafrost                                                                                                                                                                                                     |
| 558               | Distribution under a Changing Climate in Northern Norway. <i>Permafrost and Periglacial Processes</i> ,                                                                                                                                                                                                  |
| 559               | 24(1), 20-38. https://doi.org/https://doi.org/10.1002/ppp.1763                                                                                                                                                                                                                                           |
| 560               | Fewster, R. E., Morris, P. J., Ivanovic, R. F., Swindles, G. T., Peregon, A. M., & Smith, C. J. (2022). Imminent                                                                                                                                                                                         |
| 561               | loss of climate space for permafrost peatlands in Europe and Western Siberia. Nature Climate Change,                                                                                                                                                                                                     |
| 562               | 12(4), 373-379. https://doi.org/10.1038/s41558-022-01296-7                                                                                                                                                                                                                                               |
| 563               | Franklin, S. E. (2020). Interpretation and use of geomorphometry in remote sensing: a guide and review of                                                                                                                                                                                                |
| 564               | integrated applications. International Journal of Remote Sensing, 41(19), 7700-7733.                                                                                                                                                                                                                     |
| 565               | https://doi.org/10.1080/01431161.2020.1792577                                                                                                                                                                                                                                                            |
| 566               | Fronzek, S., Luoto, M., & Carter, T. (2006). Potential effect of climate change on the distribution of palsa mires                                                                                                                                                                                       |
| 567               | in subarctic Fennoscandia. Climate Research, 32(1), 1-12. https://www.int-                                                                                                                                                                                                                               |
| 568               | res.com/abstracts/cr/v32/n1/p1-12/                                                                                                                                                                                                                                                                       |
| 569               | Gee, D., Bateson, L., Sowter, A., Grebby, S., Novellino, A., Cigna, F., Marsh, S., Banton, C., & Wyatt, L.<br>(2017). Ground Motion in Areas of Abandoned Mining: Application of the Intermittent SBAS (ISBAS)                                                                                           |
| 570<br>571        | to the Northumberland and Durham Coalfield, UK. <i>Geosciences</i> , 7(3).                                                                                                                                                                                                                               |
| 572               | https://doi.org/10.3390/geosciences7030085                                                                                                                                                                                                                                                               |
| 573               | Gisnås, K., Etzelmüller, B., Lussana, C., Hjort, J., Sannel, A. B. K., Isaksen, K., Westermann, S., Kuhry, P.,                                                                                                                                                                                           |
| 574               | Christiansen, H. H., Frampton, A., & Åkerman, J. (2017). Permafrost Map for Norway, Sweden and                                                                                                                                                                                                           |
| 575               | Finland. Permafrost and Periglacial Processes, 28(2), 359-378.                                                                                                                                                                                                                                           |
| 576               | https://doi.org/https://doi.org/10.1002/ppp.1922                                                                                                                                                                                                                                                         |
| 577               | Glagolev, M., Kleptsova, I., Filippov, I., Maksyutov, S., & Machida, T. (2011). Regional methane emission                                                                                                                                                                                                |
| 578               | from West Siberia mire landscapes. Environmental Research Letters, 6(4), 045214.                                                                                                                                                                                                                         |
| 579               | Hänsel, S. (2020). Changes in the Characteristics of Dry and Wet Periods in Europe (1851–2015). <i>Atmosphere</i> ,                                                                                                                                                                                      |
| 580               | 11(10), 1080. <u>https://www.mdpi.com/2073-4433/11/10/1080</u>                                                                                                                                                                                                                                           |
| 581               | Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E.,                                                                                                                                                                                               |
| 582               | Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M.,                                                                                                                                                                                                      |
| 583               | Haldane, A., del Río, J. F., Wiebe, M., Peterson, P., Oliphant, T. E. (2020). Array programming with NumPy. <i>Nature</i> , 585(7825), 357-362. https://doi.org/10.1038/s41586-020-2649-2                                                                                                                |
| 584<br>585        | Harris, L. I., Richardson, K., Bona, K. A., Davidson, S. J., Finkelstein, S. A., Garneau, M., McLaughlin, J.,                                                                                                                                                                                            |
| 586               | Nwaishi, F., Olefeldt, D., Packalen, M., Roulet, N. T., Southee, F. M., Strack, M., Webster, K. L.,                                                                                                                                                                                                      |
| 587               | Wilkinson, S. L., & Ray, J. C. (2022). The essential carbon service provided by northern peatlands.                                                                                                                                                                                                      |
| 588               | Frontiers in Ecology and the Environment, 20(4), 222-230.                                                                                                                                                                                                                                                |
| 589               | https://doi.org/https://doi.org/10.1002/fee.2437                                                                                                                                                                                                                                                         |
|                   |                                                                                                                                                                                                                                                                                                          |





| 590        | Hugelius, G. A., Loisel, J. A., Chadburn, S. A., Jackson, R. A., Jones, M. A., MacDonald, G., Marushchak, M.,                                                                                              |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 591        | Olefeldt, D. A., Packalen, M., Siewert, M. A., Treat, C. AO., Turetsky, M., Voigt, C. A., & Yu, Z. A.                                                                                                      |
| 592        | (2020). Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw. <i>Proceedings of</i>                                                                                              |
|            |                                                                                                                                                                                                            |
| 593        | the National Academy of Sciences, 117(34), 20438-20446. https://doi.org/10.1073/pnas.1916387117.                                                                                                           |
| 594        | IPCC. (2021). The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of                                                                                                |
| 595        | the Intergovernmental Panel on Climate Change. Cambridge University Press.                                                                                                                                 |
| 596        | Irannezhad, M., Moradkhani, H., & Kløve, B. (2018). Spatiotemporal Variability and Trends in Extreme                                                                                                       |
| 597        | Temperature Events in Finland over the Recent Decades: Influence of Northern Hemisphere                                                                                                                    |
| 598        | Teleconnection Patterns. Advances in Meteorology, 2018, 7169840.                                                                                                                                           |
| 599        | https://doi.org/10.1155/2018/7169840                                                                                                                                                                       |
| 600        | Irannezhad, M., Ronkanen, AK., Kiani, S., Chen, D., & Kløve, B. (2017). Long-term variability and trends in                                                                                                |
| 601        | annual snowfall/total precipitation ratio in Finland and the role of atmospheric circulation patterns.                                                                                                     |
| 602        | Cold Regions Science and Technology, 143, 23-31.                                                                                                                                                           |
| 603        | 0 0.1                                                                                                                                                                                                      |
|            | https://doi.org/https://doi.org/10.1016/j.coldregions.2017.08.008                                                                                                                                          |
| 604        | Isaksen, K., Sollid, J. L., Holmlund, P., & Harris, C. (2007). Recent warming of mountain permafrost in                                                                                                    |
| 605        | Svalbard and Scandinavia. Journal of Geophysical Research: Earth Surface, 112(F2).                                                                                                                         |
| 606        | https://doi.org/https://doi.org/10.1029/2006JF000522                                                                                                                                                       |
| 607        | Johansson, M., Åkerman, J., Keuper, F., Christensen, T. R., Lantuit, H., & Callaghan, T. V. (2011). Past and                                                                                               |
| 608        | Present Permafrost Temperatures in the Abisko Area: Redrilling of Boreholes. AMBIO, 40(6), 558.                                                                                                            |
| 609        | https://doi.org/10.1007/s13280-011-0163-3                                                                                                                                                                  |
| 610        | Johansson, M., Callaghan, T. V., Bosiö, J., Åkerman, H. J., Jackowicz-Korczynski, M., & Christensen, T. R.                                                                                                 |
| 611        | (2013). Rapid responses of permafrost and vegetation to experimentally increased snow cover in sub-                                                                                                        |
| 612        | arctic Sweden. Environmental Research Letters, 8(3), 035025. https://doi.org/10.1088/1748-                                                                                                                 |
| 613        | 9326/8/3/035025                                                                                                                                                                                            |
| 614        | Köchy, M., Hiederer, R., & Freibauer, A. (2015). Global distribution of soil organic carbon – Part 1: Masses and                                                                                           |
| 615        | frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world.                                                                                                        |
|            |                                                                                                                                                                                                            |
| 616        | <i>SOIL</i> , <i>1</i> (1), 351-365. <u>https://doi.org/10.5194/soil-1-351-2015</u>                                                                                                                        |
| 617        | König, S., Schultz, J. A., Schoch, A., Blöthe, J., Schrott, L., & Thonfeld, F. (2019). Mountain Permafrost                                                                                                 |
| 618        | Distribution Modeling-A Geomorphometry-Remote Sensing Approach for the Hohe Tauern National                                                                                                                |
| 619        | Park, Austria. Dreiländertagung der DGPF, der OVG und der SGPF in Wien, Österreich–                                                                                                                        |
| 620        | Publikationen der DGPF, 28.                                                                                                                                                                                |
| 621        | Könönen, O. H., Karjalainen, O., Aalto, J., Luoto, M., & Hjort, J. (2022). Environmental spaces for palsas and                                                                                             |
| 622        | peat plateaus are disappearing at a circumpolar scale. <i>The Cryosphere Discuss.</i> , 2022, 1-37.                                                                                                        |
| 623        | https://doi.org/10.5194/tc-2022-135                                                                                                                                                                        |
| 624        | Liu, L., Zhang, T., & Wahr, J. (2010). InSAR measurements of surface deformation over permafrost on the                                                                                                    |
| 625        | North Slope of Alaska. Journal of Geophysical Research: Earth Surface, 115(F3).                                                                                                                            |
| 626        | https://doi.org/10.1029/2009JF001547                                                                                                                                                                       |
| 627        | Luoto, M., & Seppälä, M. (2002). Modelling the distribution of palsas in Finnish Lapland with logistic                                                                                                     |
| 628        | regression and GIS. <i>Permafrost and Periglacial Processes</i> , 13(1), 17-28.                                                                                                                            |
| 629        | Luoto, M., & Seppälä, M. (2003). Thermokarst ponds as indicators of the former distribution of palsas in                                                                                                   |
|            |                                                                                                                                                                                                            |
| 630        | Finnish Lapland. Permafrost and Periglacial Processes, 14(1), 19-27. https://doi.org/10.1002/ppp.441                                                                                                       |
| 631        | Mamet, S. D., Chun, K. P., Kershaw, G. G. L., Loranty, M. M., & Kershaw, G. P. (2017). Recent Increases in                                                                                                 |
| 632        | Permafrost Thaw Rates and Areal Loss of Palsas in the Western Northwest Territories, Canada.                                                                                                               |
| 633        | Permafrost and Periglacial Processes, 28, 619-633. https://doi.org/ 10.1002/ppp.1951                                                                                                                       |
| 634        | Markkula, I., Turunen, M., & Rasmus, S. (2019). A review of climate change impacts on the ecosystem services                                                                                               |
| 635        | in the Saami Homeland in Finland. Science of The Total Environment, 692, 1070-1085.                                                                                                                        |
| 636        | https://doi.org/https://doi.org/10.1016/j.scitotenv.2019.07.272                                                                                                                                            |
| 637        | Matthews, J. A., Dahl, SO., Berrisford, M. S., & Nesje, A. (1997). Cyclic Development and Thermokarstic                                                                                                    |
| 638        | Degradation of Palsas in the Mid-Alpine Zone at Leirpullan, Dovrefjell, Southern Norway. Permafrost                                                                                                        |
| 639        | and Periglacial Processes, 8(1), 107-122. https://doi.org/https://doi.org/10.1002/(SICI)1099-                                                                                                              |
| 640        | 1530(199701)8:1<107::AID-PPP237>3.0.CO;2-Z                                                                                                                                                                 |
| 641        | McKinney, W. (2011). pandas: a Foundational Python Library for Data Analysis and Statistics.                                                                                                               |
| 642        | Michanley, W. (2017), pandas, a Foundational Fynion Elorary for Data Anarysis and Statistics.<br>Miglovets, M., Zagirova, S., Goncharova, N., & Mikhailov, O. (2021). Methane Emission from Palsa Mires in |
| 643        | Northeastern European Russia. Russian Meteorology and Hydrology, 46(1), 52-59.                                                                                                                             |
| 643<br>644 | 1 00 00 000 000                                                                                                                                                                                            |
|            | https://doi.org/10.3103/S1068373921010076<br>Marin P. Bastar C. Clautian M. Hawat L. Nah M.L. Willia M. Batas P. Willemann C. and Patarman K.                                                              |
| 645        | Morin, P., Porter, C., Cloutier, M., Howat, I., Noh, M.J., Willis, M., Bates, B., Willamson, C. and Peterman, K.                                                                                           |
| 646        | (2016). ArcticDEM; a publically available, high resolution elevation model of the Arctic. EGU General                                                                                                      |
| 647        | Assembly 2016, Vienna, Austria.                                                                                                                                                                            |
| 648        | Obu, J. (2021). How Much of the Earth's Surface is Underlain by Permafrost? Journal of Geophysical Research:                                                                                               |
| 649        | Earth Surface, 126(5), e2021JF006123. https://doi.org/https://doi.org/10.1029/2021JF006123                                                                                                                 |





| 650        | Obu, J., Westermann, S., Kääb, A., & Bartsch, A. (2018). Ground Temperature Map, 2000-2016, Northern                                                                                                                               |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 651        | Hemisphere Permafrost PANGAEA. https://doi.org/10.1594/PANGAEA.888600                                                                                                                                                              |
| 652        | Olvmo, M., Holmer, B., Thorsson, S., Reese, H., & Lindberg, F. (2020). Sub-arctic palsa degradation and the                                                                                                                        |
| 653        | role of climatic drivers in the largest coherent palsa mire complex in Sweden (Vissátvuopmi), 1955-                                                                                                                                |
| 654        | 2016. Scientific Reports, 10(1), 8937. https://doi.org/10.1038/s41598-020-65719-1                                                                                                                                                  |
| 655        | Otto, J. c., Keuschnig, M., Götz, J., Marbach, M., & Schrott, L. (2012). Detection of mountain permafrost by                                                                                                                       |
| 656        | combining high resolution surface and subsurface information-an example from the Glatzbach                                                                                                                                         |
| 657        | catchment, Austrian Alps. Geografiska Annaler: Series A, Physical Geography, 94(1), 43-57.                                                                                                                                         |
| 658        | https://doi.org/10.1111/j.1468-0459.2012.00455.x                                                                                                                                                                                   |
| 659        | QGIS, D. (2022). QGIS User Guide: 24.2.1 Raster Analysis. Retrieved from                                                                                                                                                           |
| 660        | https://docs.qgis.org/3.16/en/docs/user_manual/processing_algs/gdal/rasteranalysis.html#hillshade                                                                                                                                  |
| 661        | Ramage, J., Jungsberg, L., Wang, S. N., Westermann, S., Lantuit, H., & Heleniak, T. (2021). Population living                                                                                                                      |
| 662        | on permafrost in the Arctic. <i>Population and Environment</i> , 43(1), 22-38.                                                                                                                                                     |
| 663        | https://doi.org/10.1007/s11111-020-00370-6                                                                                                                                                                                         |
| 664        | Reinosch, E., Buckel, J., Dong, J., Gerke, M., Baade, J., & Riedel, B. (2020). InSAR time series analysis of                                                                                                                       |
| 665        | seasonal surface displacement dynamics on the Tibetan Plateau. <i>The Cryosphere</i> , 14(5), 1633-1650.                                                                                                                           |
| 666        | https://doi.org/10.5194/tc-14-1633-2020                                                                                                                                                                                            |
| 667        | Sannel, A. B. K. (2020). Ground temperature and snow depth variability within a subarctic peat plateau                                                                                                                             |
| 668<br>669 | landscape. <i>Permafrost and Periglacial Processes</i> , <i>31</i> (2), 255-263. https://doi.org/10.1002/ppp.2045<br>Sannel, A. B. K., Hugelius, G., Jansson, P., & Kuhry, P. (2016). Permafrost Warming in a Subarctic Peatland – |
| 670        | Which Meteorological Controls are Most Important?. <i>Permafrost and Periglacial Processes</i> , 27(2),                                                                                                                            |
| 671        | 177-188. https://doi.org/10.1002/ppp.1862                                                                                                                                                                                          |
| 672        | Sannel, A. B. K., & Kuhry, P. (2011). Warming-induced destabilization of peat plateau/thermokarst lake                                                                                                                             |
| 673        | complexes. Journal of Geophysical Research: Biogeosciences, 116(G3).                                                                                                                                                               |
| 674        | https://doi.org/10.1029/2010JG001635                                                                                                                                                                                               |
| 675        | Schuur, E. A. G., McGuire, A. D., Schädel, C., Grosse, G., Harden, J. W., Hayes, D. J., Hugelius, G., Koven, C.                                                                                                                    |
| 676        | D., Kuhry, P., Lawrence, D. M., Natali, S. M., Olefeldt, D., Romanovsky, V. E., Schaefer, K.,                                                                                                                                      |
| 677        | Turetsky, M. R., Treat, C. C., & Vonk, J. E. (2015). Climate change and the permafrost carbon                                                                                                                                      |
| 678        | feedback. <i>Nature</i> , 520(7546), 171-179. https://doi.org/10.1038/nature14338                                                                                                                                                  |
| 679        | Schuur, E. A. G., Vogel, J. G., Crummer, K. G., Lee, H., Sickman, J. O., & Osterkamp, T. E. (2009). The effect                                                                                                                     |
| 680        | of permafrost thaw on old carbon release and net carbon exchange from tundra. <i>Nature</i> , 459(7246),                                                                                                                           |
| 681        | 556-559. https://doi.org/10.1038/nature08031                                                                                                                                                                                       |
| 682        | Seppälä, M. (2011). Synthesis of studies of palsa formation underlining the importance of local environmental                                                                                                                      |
| 683        | and physical characteristics. Quaternary Research, 75(2), 366-370.                                                                                                                                                                 |
| 684        | https://doi.org/10.1016/j.yqres.2010.09.007                                                                                                                                                                                        |
| 685        | Siewert, M.B., 2018. High-resolution digital mapping of soil organic carbon in permafrost terrainusing machine                                                                                                                     |
| 686        | learning: a case study in a sub-Arctic peatland environment. <i>Biogeosciences</i> , 15, 1663-1682.                                                                                                                                |
| 687        | Sjöberg, Y., Siewert, M.B., Rudy, A.C.A., Paquette, M., Bouchard, F., Malenfant-Lepage, J., Fritz, M., 2020.                                                                                                                       |
| 688        | Hot trends and impact in permafrost science. Permafrost and Periglacial Processes, 31, 461-471.                                                                                                                                    |
| 689        | Short, N., LeBlanc, AM., Sladen, W., Oldenborger, G., Mathon-Dufour, V., & Brisco, B. (2014).                                                                                                                                      |
| 690        | RADARSAT-2 D-InSAR for ground displacement in permafrost terrain, validation from Iqaluit                                                                                                                                          |
| 691        | Airport, Baffin Island, Canada. Remote Sensing of Environment, 141, 40-51.                                                                                                                                                         |
| 692        | https://doi.org/https://doi.org/10.1016/j.rse.2013.10.016                                                                                                                                                                          |
| 693        | SMHI, (2022). Download Meteorological observations. Retrieved from                                                                                                                                                                 |
| 694        | https://www.smhi.se/data/meteorologi/ladda-ner-meteorologiska-                                                                                                                                                                     |
| 695        | observationer#param=airtemperatureInstant,stations=core,stationid=191910                                                                                                                                                           |
| 696        | Smith, M. W., & Riseborough, D. W. (1996). Permafrost monitoring and detection of climate change.                                                                                                                                  |
| 697        | Permafrost and Periglacial Processes, 7(4), 301-309.                                                                                                                                                                               |
| 698        | https://doi.org/https://doi.org/10.1002/(SICI)1099-1530(199610)7:4<301::AID-PPP231>3.0.CO;2-R                                                                                                                                      |
| 699        | Smith, S.L, O'Neill, H.B., Isaksen, K., Noetzli, J. and Romanovsky, V.E. (2022). The changing theral state of                                                                                                                      |
| 700<br>701 | permafrost. <i>Nature Reviews Earth and Environment</i> , 3, 10-23.<br>Sowter, A., Bin Che Amat, M., Cigna, F., Marsh, S., Athab, A., & Alshammari, L. (2016). Mexico City land                                                    |
| 701        | subsidence in 2014–2015 with Sentinel-1 IW TOPS: Results using the Intermittent SBAS (ISBAS)                                                                                                                                       |
| 702        | technique. International Journal of Applied Earth Observation and Geoinformation, 52, 230-242.                                                                                                                                     |
| 703        | https://doi.org/https://doi.org/10.1016/j.jag.2016.06.015                                                                                                                                                                          |
| 705        | Spyder Website Contributors. (2021). Spyder IDE. Retrieved from <u>https://www.spyder-ide.org/</u>                                                                                                                                 |
| 706        | Swingedouw, D., Ifejika Speranza, C., Bartsch, A., Durand, G., Jamet, C., Beaugrand, G., & Conversi, A.                                                                                                                            |
| 707        | (2020). Early Warning from Space for a Few Key Tipping Points in Physical, Biological, and Social-                                                                                                                                 |
| 708        | Ecological Systems. Surveys in Geophysics, 41(6), 1237-1284. https://doi.org/10.1007/s10712-020-                                                                                                                                   |
| 709        | 09604-6                                                                                                                                                                                                                            |





| 710        | Tarnocai, C., Canadell, J. G., Schuur, E. A. G., Kuhry, P., Mazhitova, G., & Zimov, S. (2009). Soil organic                                                                                                             |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 711<br>712 | carbon pools in the northern circumpolar permafrost region. <i>Global Biogeochemical Cycles</i> , 23(2).<br>https://doi.org/https://doi.org/10.1029/2008GB003327                                                        |
| 713        | Torres, R., Snoeij, P., Geudtner, D., Bibby, D., Davidson, M., Attema, E., Potin, P., Rommen, B., Floury, N.,                                                                                                           |
| 714        | Brown, M., Traver, I. N., Deghaye, P., Duesmann, B., Rosich, B., Miranda, N., Bruno, C., L'Abbate,                                                                                                                      |
| 715        | M., Croci, R., Pietropaolo, A., Rostan, F. (2012). GMES Sentinel-1 mission. <i>Remote Sensing of</i>                                                                                                                    |
| 716        | Environment, 120, 9-24. https://doi.org/https://doi.org/10.1016/j.rse.2011.05.028                                                                                                                                       |
| 717        | Turetsky, M. R., Abbott, B. W., Jones, M. C., Anthony, K. W., Olefeldt, D., Schuur, E. A. G., Grosse, G.,                                                                                                               |
| 718        | Kuhry, P., Hugelius, G., Koven, C., Lawrence, D. M., Gibson, C., Sannel, A. B. K., & McGuire, A. D.                                                                                                                     |
| 719        | (2020). Carbon release through abrupt permafrost thaw. <i>Nature Geoscience</i> , 13(2), 138-143.                                                                                                                       |
| 720        | https://doi.org/10.1038/s41561-019-0526-0                                                                                                                                                                               |
| 721        | Vallée, S., & Payette, S. (2007). Collapse of permafrost mounds along a subarctic river over the last 100 years                                                                                                         |
| 722        | (northern Québec). Geomorphology, 90, 162-170. https://doi.org/10.1016/j.geomorph.2007.01.019                                                                                                                           |
| 723        | van Huissteden, J., Teshebaeva, K., Cheung, Y., Magnússon, R. Í., Noorbergen, H., Karsanaev, S. V., Maximov,                                                                                                            |
| 724        | T. C., & Dolman, A. J. (2021). Geomorphology and InSAR-Tracked Surface Displacements in an Ice-                                                                                                                         |
| 725        | Rich Yedoma Landscape. Frontiers in Earth Science, 9(724).                                                                                                                                                              |
| 726        | https://doi.org/10.3389/feart.2021.680565                                                                                                                                                                               |
| 727        | Varner, R. K., Crill, P. M., Frolking, S., McCalley, C. K., Burke, S. A., Chanton, J. P., Holmes, M. E., null, n.,                                                                                                      |
| 728        | Saleska, S., & Palace, M. W. (2022). Permafrost thaw driven changes in hydrology and vegetation                                                                                                                         |
| 729        | cover increase trace gas emissions and climate forcing in Stordalen Mire from 1970 to 2014.                                                                                                                             |
| 730        | Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,                                                                                                                     |
| 731        | 380(2215), 20210022. https://doi.org/10.1098/rsta.2021.0022                                                                                                                                                             |
| 732        | Vikhamar-Schuler, D., Isaksen, K., Haugen, J. E., Tømmervik, H., Luks, B., Schuler, T. V., & Bjerke, J. W.                                                                                                              |
| 733        | (2016). Changes in Winter Warming Events in the Nordic Arctic Region. Journal of Climate, 29(17),                                                                                                                       |
| 734        | 6223-6244. https://doi.org/10.1175/JCLI-D-15-0763.1                                                                                                                                                                     |
| 735        | Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson,                                                                                                           |
| 736        | P., Weckesser, W., & Bright, J. (2020). SciPy 1.0: fundamental algorithms for scientific computing in                                                                                                                   |
| 737        | Python. Nature methods, 17(3), 261-272.                                                                                                                                                                                 |
| 738        | Vorren, KD. (2017). The first permafrost cycle in Færdesmyra, eastern Finnmark, Norway? <i>Norsk Geografisk</i>                                                                                                         |
| 739        | Tidsskrift - Norwegian Journal of Geography, 71(2), 114-121.                                                                                                                                                            |
| 740        | https://doi.org/10.1080/00291951.2017.1316309                                                                                                                                                                           |
| 741        | Zuidhoff, F. S. (2002). Recent decay of a single palsa in relation to weather conditions between 1996 and 2000                                                                                                          |
| 742        | in Laivadalen, northern Sweden. Geografiska Annaler Series A-Physical Geography, 84A(2), 103-111.                                                                                                                       |
| 743<br>744 | https://doi.org/10.1111/j.0435-3676.2002.00164.x                                                                                                                                                                        |
| 744        | Zuidhoff, F. S., & Kolstrup, E. (2000). Changes in palsa distribution in relation to climate change in Laivadalen,<br>northern Sweden especially 1960–1997. <i>Permetrast and Perialacial Processes</i> , 11(1), 55-69. |

 745
 northern Sweden, especially 1960–1997. Permafrost and Periglacial Processes, 11(1), 55-69.

 746
 https://doi.org/10.1002/(SICI)1099-1530(200001/03)11:1